AUTOCAD

CBT Curriculum National Vocational Certificate Level 3

Kingdom of the Netherlands

Version 1 - July 2013

Published by

National Vocational and Technical Training Commission Government of Pakistan

Headquarter

Plot 38, Kirthar Road, Sector H-9/4, Islamabad, Pakistan www.navttc.org

Responsible

Director General Skills Standard and Curricula, National Vocational and Technical Training Commission National Deputy Head, TVET Reform Support Programme, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Layout & design SAP Communications

Photo Credits TVET Reform Support Programme

URL links

Responsibility for the content of external websites linked in this publication always lies with their respective publishers. TVET Reform Support Programme expressly dissociates itself from such content.

This document has been produced with the technical assistance of the TVET Reform Support Programme, which is funded by the European Union, the Embassy of the Kingdom of the Netherlands, the Federal Republic of Germany and the Royal Norwegian Embassy and has been commissioned by the German Federal Ministry for Economic Cooperation and Development (BMZ). The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH in close collaboration with the National Vocational and Technical Training Commission (NAVTTC) as well as provincial Technical Education and Vocational Training Authorities (TEVTAs), Punjab Vocational Training Council (PVTC), Qualification Awarding Bodies (QABs)s and private sector organizations.

Document Version July, 2013 Islamabad, Pakistan

CBT Curriculum National Vocational Certificate Level 3

Version 1 - July 2013

Table of Contents

1. Introduction	
2. Overview of Curriculum for AutoCAD	10
✓ Module 1: Exhibit Duties & Rights at workplace	15
 Module 2: Perform Orientation about AutoCAD 2D Fundamer 	tals 18
✓ Module 3: Create 3D Interface Drawings	
✓ Module 4: Draw Coordinates	23
✓ Module 5: Draw 3D orbit Navigation & Model	26
✓ Module 6: Produce 3D solid & 3D faces	29
✓ Module 7: Insert Surfaces	
✓ Module 8: Develop Solids	
✓ Module 9: Modify Solid faces	
 Module 10: Navigate sections & merge flat objects from 3D m 	odels 39
✓ Module 11: Customise rendering material & light	40
3. Assessment Guidance	46

1. Introduction

The structure of this course

This curriculum comprises of 11 modules. The recommended delivery time is 800 hours. Delivery of the course can therefore be full time (6 hours a business day), 5 days a week, for 6 months (on average 22 business days a month). Training providers are at liberty to develop other models of delivery, including part-time and evening delivery.

The full structure of the course is as follows:

Module	Theory	Practical	Total hours
1: Exhibit Duties and Rights at the Workplace	10	17	27
2: Perform Orientation about AutoCAD 2D Fundamentals	10	52	62
3: Create 3D Interface drawings	13	66	79
4: Draw Coordinates	14	50	64
5: Draw 3D Orbit, Navigations and Model	19	97	116
6: Produce 2D Solids and 3D Faces	09	39	48
7: Insert Surfaces	16	77	93
8: Develop Solids	14	53	67
9: Modify Solid Faces	07	26	33
10: Navigate Sections and merge Flat Objects from 3D Models	09	31	40
11: Customise Rendering, Materials and Lights	37	126	163

This is a curriculum of AutoCAD programme which has been developed for implementation throughout Pakistan. This curriculum provides stakeholders with guidance to encompass most widely used 3D processes for the product development, (Surfaces, Solids, Rendering and Lights). These practices produced by participants belonging to the different sub domains of Computer Aided Design.

Main Objective of course

The overall objective of this programme is to produce employees who can provide sufficient assistance to their supervisors in creating 3D AutoCAD drawings. Then certified of this programme will also be able to become entrepreneurs. However, this will require providing additional input on entrepreneurship development for the one who is willing to start his/her own business. (Not included in the curriculum).

Central aim of the training provider (trainer / teacher)

Aim of the instructor for AutoCAD tool curriculum is to develop drawing related skills through practical (action oriented work). Action orientation can be understood as the willingness and ability of a student to act in different situations in a socially responsible manner.

Teaching staff will support student in developing his/her willingness and ability, through their managerial, technical knowledge and capabilities, to solve tasks and problems that are goal-oriented. They will need to use student-centred, practical oriented methods. They will also need to develop a programme of practical assessment that reflects the learning outcomes stated in this curriculum.

Student will develop ability as an individual to clarify issues, think thorough and to assess development opportunities. He/she should learn to consider requirements and constraints in day to day routine life and to develop his/her own projects / products.

Teaching staff will also support students in developing characteristics such as articulateness, assertiveness, prudent self-reliance, resilience, responsibility, and a sense of duty and negotiation tactics.

This curriculum can serve as a quality improvement initiative geared to helping institution build their capacity to produce resources for AutoCAD. By leveraging the guided discussions, activities, resources, and other materials in these trainings, participant will build his/her knowledge, skills, and abilities related to:

- Knowledge about 2D and 3D design environment
- Differentiation between different types of layouts
- Explanation of problem solving techniques

- Practical experience of designing drawings (Surfaces, Solids, Rendering)
- Understanding of the coordinates
- Ability to deal with clients
- Information about light functions
- Practical experience of command line usage
- Adequate presentation skills
- Team coordination skills

Entry level for trainees

An interested individual with Higher Secondary School Certificate or equivalent with comfort level of English language and mathematics. Satisfactory completion of appropriate admission assessment test may also be applicable.

Minimum teaching qualification

Teaching staff should have at least five (5) years experience related to the application of the AutoCAD latest versions i.e. 2013. Beside this the incumbent also holds a bachelor's degree (16 years) in relevant fields. Apart from this s/he must be familiar with device integration particularly to CAD/CAM, Plotter. They should also hold or be working towards a formal teaching qualification.

Medium of instruction

Instructions will be provided in Urdu and English languages. For employment in the different demographic regions, orientations to specific linguistic expression with language conversion tools (worked with UNI codes) are recommended. **Terminology**

This curriculum is for AutoCAD (Computer Aided Design). Some organisations may use alternative terms to describe this job role, for example Draftsman, Drawing Assistant, Animator, etc. Training providers should examine the scope of the curriculum to determine whether this curriculum meets the needs of potential candidates/incumbents.

Laws and Regulations

AutoCAD work may govern by the specific applicable territorial laws, imposed from competent authorities; mentor should abide by the laws.

Suggested distribution of modules

This qualification is made up of eleven (11) modules including the general practices. Final assessment is not included here. Trainer can utilize Eight (8) hours for internal assessment. Suggested distribution of these modules is presented overleaf. This is not prescriptive, and training providers may modify this according to given circumstances.

One module is interdependent: Module 1: Perform Duties and Exhibit Rights at workplace. This is illustrated in the distribution table.

Rest of the module 2 to 11 should be taught in sequence.

Each module covers a range of learning components. These are intended to provide detailed guidance to teachers (*learning elements*) and give them additional support for preparing their lessons (*materials required*). The detail provided by each module will contribute to a standardised approach of teaching, ensuring that training providers in different parts of the country have clear information on what should be taught.

Module 1: Duties and rights at the workplace	27 Hours
Module2: Orientation to AutoCAD 2D Fundamentals	70 Hours
Module 3: Create 3D Interface	79 Hours
Module 4: Draw Coordinates	64 Hours
Module 5: Draw 3D Orbit, Navigation and Model	116 Hours
Module 6: Produce 2D Solids and 3D Faces	48 Hours
Module 7: Insert Surfaces	93 Hours

The distribution table is shown below:

Module 8: Develop Solids	67 Hours
Module 9: Modify Solid Faces	33 Hours
Module 10: Navigate Sections and Flat Objects from 3D Models	40 Hours
Module 11: Customise Rendering, Materials and Lights	163 Hours

Definition

AutoCAD professional draws the 2-dimensional and 3-dimensional objects/artifacts with user coordinates for the Architectural design of the building, render them with light shadows. Use of surfaces, solids, navigation helps to visualize the model in a simulated perspective. An individual with little supervision from inline manager(s) and with little autonomy will be able to update the drawings for real world scenarios.

Overall objectives of this course

- ✓ To assist architects team in 2D/3D drawings
- ✓ Equip resources with technical skills
- ✓ Provide skilled resource for CAM (Computer Aided Manufacturing) design integration
- ✓ Work closely with other team members to ensure excellent service is provided to management
- ✓ Ensure the team is working as per company policies
- ✓ Achieve organizational process assets.

Competencies gained after completion of the course:

At the end of the course, the student must have attained the following competencies:

- ✓ Prepare 2D/3D drawings
- ✓ Manage image rendering
- ✓ Create solid faces

Personal requirements

Trainee needs the following characteristics:

- A genuine interest in computer aided design industry (i.e. Mathworks Matlab, Autodesk AutoCAD.)
- Good health and stamina Capacity to work for a longer period of time in tough environment
- Ability to lead and work as a member of a team
- Willing to maintain the high standard of standard operating procedure necessary in any project / product development
- Flexibility, Integrity
- Desire to learn

Opportunities for employment and advancement

Trainees can be employed in government / semi-government / private (MNC's) organizations. Experienced resources may advance through promotions with the same employer or by moving to more advanced positions with other employers. They can become:

- Draftsman
- Assistant Architect
- Associate Architect
- Architect (Civil and Mechanical)

There are good prospects of travelling within Pakistan and abroad. The employment outlook in this occupation will be influenced by a wide variety of factors including:

- Employment turnover (work opportunities generated by people leaving existing positions)
- Occupational growth (work opportunities resulting from the creation of new positions that never existed before)
- Size of the industry
- Flexibility of the applicant (concerning location and schedule of work).

2. Overview of the curriculum for AutoCAD

Module Title and Aim	Learning Units	Timings
Module 1: Exhibit Duties and Rights at the workplace Aim: To develop code of ethics and professional conduct, improve planning capabilities, and awareness to provision of applicable territorial business / employment related rights at workplace.	LU1: Practise Ethics and professional conduct LU2: Process business activities LU3: Create awareness of rights	Timeframe of module 27 hours Theory Days/hours 10 hours Workplace Days/hours 17 hours
Module 2: Perform orientation about AutoCAD 2D Fundamentals Aim: To provide knowledge and skills to create geometric entities quickly and accurately. In learning to use a CAD system, lines and circles are the first two, and perhaps the most important two, geometric entities that one should master the skills of creating and modifying.	LU1: Control the display in drawings LU2: Create basic drawings LU3: Manipulate objects	Timeframe of module 70 hours Theory Days/hours 10 hours Workplace Days/hours 60 hours
Module 3: Create 3D Interface drawings Aim: The module explores the basic Three (3) dimensional interfaces with thickness and elevation to visualize the model.	LU1: Develop familiarity with 3D Basics interface LU2: Know about Thickness and Elevation LU3: Visualize the Model	Timeframe of module 79 hours Theory Days/hours 13 hours Workplace Days/hours 66 hours

Module 4: Draw Coordinates Aim: The module explores the basic of 3D User and Z Cartesian (X, Y, Z) coordinates system.	LU1: Acquire basic terminologies of Z Coordinates LU2: investigate User Coordinates System	Timeframe of module 64 hours Theory Days/hours 14 hours Workplace Days/hours 50 hours
Module 5: Draw 3D Orbit, Navigations and Model Aim: The module explores the use of 3D orbit for a model, creation of a camera and aspects of 3D model objects in detail.	LU1: Develop familiarity with 3D Orbit LU2: Research Three dimensional navigation LU3: Inspect 3D Object	Timeframe of module 116 hours Theory Days/hours 19 hours Workplace Days/hours 97 hours
Module 6: Produce 2D Solids and 3D Faces Aim: The module explores the two dimensional solids and three dimensional faces with Edge and invisible Edge.	LU1: Inspect 2D Solids and 3D Faces LU2: Study Edge	Timeframe of module 48 hours Theory Days/hours 9 hours Workplace Days/hours 39 hours

Module 7: Insert Surfaces Aim: To study, and analyze basic and complex 3D surfaces.	LU1: Know about Basic 3D surfaces LU2: Comprehend Complex surfaces	Timeframe of module 93 hours Theory Days/hours 16 hours Workplace Days/hours 77 hours
Module 8: Develop Solids Aim: To explore the composites of solids and their three dimensional editing.	LU1: Create Solids LU2: Edit 3D LU3: Study Solid composites	Timeframe of module 67 hours Theory Days/hours 14 hours Workplace Days/hours 53 hours
Module 9: Modify Solid Faces Aim: To learn the modification of the 3D solid faces.	LU1: Modify Solid Faces LU2: Edit Solids	Timeframe of module 33 hours Theory Days/hours 07 hours Workplace Days/hours 26 hours

Module 10: Navigate Sections and merge Flat Objects from 3D Model Aim: To learn the creation of the Section and the Flat objects from three dimensional models.	LU1: Handle Section Objects LU2: Handle Flat Objects	Timeframe of module 40 hours Theory Days/hours 09 hours Workplace Days/hours 31 hours
Module 11: Customize Rendering, Materials and Lights Aim: To learn the application of Rendering, its environment and background, and advance features. Use of different Materials and Lights highlighted for 3D drawings.	LU1: Study Rendering LU2: Employ Materials LU3: Employ Lights	Timeframe of module 163 hours Theory Days/hours 37 hours Workplace Days/hours 126 hours

3. Teaching and Learning Guide for AutoCAD

The aim of the training for student is to be able to act independently and responsibly in his/her field of work, by following an educational program where this is a part of the overall methodological concept.

Different methodologies can therefore contribute to achieve this objective. Theory methodologies should be well supported by appropriate resources, as indicated in the 'materials required' column of the learning unit specifications. Teachers should also illustrate theory sessions with examples of how the learning can be applied in the workplace. Practical methodologies should be set in an appropriate environment and supported by appropriate resources. Methods that directly promote capacity-building for the student are particularly suitable, for example practical work, mock up, role play, emergency and contingency situational training, case study, situational problem solving, body language, positive impression, dignity in labor, and therefore should be included appropriately in the teaching approach.

Module 1: Exhibit Duties and Rights at the workplace

Objective of the module: To develop code of ethics and professional conduct, improve planning capabilities, and awareness to provision of applicable territorial business / employment related rights at workplace.

Duration27 hoursTheory:10 hoursPractical:17 hours

Learning Unit	Learning Outcomes	Le	arning Elements	Duration	M Re	aterials equired	Learning Place
		1.	Take ownership for the	Total Hours:			
LU1: Demonstrate	The learner will be able to:		decisions/actions he/she makes or	06 hours	•	Workbooks	Theory:
Ethics and			fails to make and their consequences.		٠	Pen	Class room
Professional	Perform the mandatory standard		(Role Play)	Theory:	•	Case studies	
Conduct	for responsibility, respect,	2.	Show high regard for resources	02 hours	•	Internet	Practical
	fairness and honesty against the		entrusted to him/her. Including			connection	learning:
	applicable territorial laws.		subordinates, tangible assets	Practical:			Classroom/Co
			(equipment), company profile.	04 hours			mputer Lab
		3.	Make decisions and act				
			impartially/objectively free from self-				
			interest. (Quantified Self-assessment				
			can be performed e.g. case study.)				
			Area like conflict of interest				
		4.	Understand truth and act in truthful				
			manner in conduct/communication				
			e.g. daily attendance register.				

		1.	Provide due assistance to in-line				
LU2: Plan Business	The learner will be able to:		manager e.g. coordinating recurring	Total Hours :	•	Workbooks	Theory:
Process activities			meetings, intimate resource	15 hours	•	Pen	Class room
	Identify tasks, their scheduling,		availability, create and keep		•	Case studies	
	define milestones, and learn		documentations, validate applicable	Theory:	•	Internet	Practical
	optimal utilization of resources.		company defined standards.	05 hours		connection	learning:
		2.	Define activities, e.g. Apply specific				Classroom/Co
			life cycle methodologies –	Practical:			mputer Lab
			(Requirement gathering, design	10 hours			
			solution, prototype, testing,				
			documentations)				
		3.	Estimate time, e.g. hour calculation				
			for an activity; consider calendar year				
			official leaves, company working				
			timings.				
		4.	Achieve work breakdown, divide				
			module in smaller and more				
			manageable components e.g. testing				
			a drawing may have components like				
			interface, coordinates, and render				
			cases.				
		5.	Level resource due to work load, e.g.				
			calculation of leisure hours of a				
			worker.				

LU3: Create Awareness about Rights	 The learner will be able to: 1. Recognize the inspirational requirement of human rights in employment context. 	Inform the concerned authority and uphold the policies, rules/regulationsTotal: 06 hoursthat govern the work and workplace.Theory: 03 hoursReport illegal conduct or illegitimate action to appropriate management.03 hoursProtect propriety or confidential information. (Intellectual Property Rights, Copy Rights).03 hours	 Workbooks Pen Case studies Internet connection 	Theory: Class room Practical learning: Classroom/Co mputer Lab

Module2: Perform Orientation about AutoCAD 2D Fundamentals

Objective of the module: Aims to provide knowledge and skills to create geometric entities quickly and accurately. In learning to use a CAD system, **lines** and **circles** are the first two, and perhaps the most important two, one should master the skills of creating and modifying geometric entities.

Duration70 hoursTheory:10 hoursPractical:60 hours

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1: Control the displays in drawings	 The student will be able to: Create and save AutoCAD drawing files. Use the AutoCAD visual reference commands. 	 Perform 1. Precision 2. Zoom Extent 3. Drawing LIMITS 4. Status Bar 5. GRID Display 6. PAN Realtime 	Total Hours: 15 hours Theory: 3 hours Practical:	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room P ractical learning: Classroom/Computer Lab
	The student will be able to:	Dorform	Total Hours		
basic drawings	 Draw using Line and Circle commands Define Positions using the Basic Entry methods 	 Perform Format Units Setup LINE command Coordinates Interactive Input method SNAP Option World space User coordinate system World coordinate system 	Theory: 05 hours 05 hours Practical: 30 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room P ractical learning: Classroom/Computer Lab

		10. UCS icon Display			
		11. TTR, circle			
		12. Relative Coordinate			
		13. Coordinate systems			
		14. Cartesian coordinate			
		system			
		15. Absolute coordinates			
		16. Positions, defining			
		17. LINE, Close option			
		18. CIRCLE command			
		19. TTT, circle			
		20. ARC command			
LU3: Manipulate	The student will be able to:	1. ERASE command	Total Hours:		
objects as desire			20 hours	Workbooks	Theory:
	1. Use the ERASE command	2. Select window		• Pen	Class room
	2. Use the AutoCAD Pan Real-time		Theory:	Case studies	
	option		04 hours	Computer	Practical learning:
				 Internet connection 	Classroom/Computer
			Practical:		Lab
			16 hours		

Module 3: 3D Create 3D Interface Drawings

Objective of the module: The module explores the basic Three (3) dimensional interfaces with thickness and elevation to visualize the model.

Duration	79 hours	Theory:	13 hours	Practical:	66 hours
----------	----------	---------	----------	------------	----------

Learning Unit	Learning Outcomes	Learning Elements Duration		Materials Required	Learning Place
LU1:	The student will be able to:	1. Introduce 3D Basic	Total Hours:		
Develop	1. Apply 3D Basic Ribbons and	Ribbons including	35 hours	Workbooks	Theory:
familiarity with	Pull down.	Create, Edit, Draw,		• Pen	Class room
3D Basics	2. Gain sound knowledge of 3D	Modify, Selection,	Theory:	Case studies	
interface	Modelling interface (Panels	Coordinates, Layers and	05 hours	Computer	Practical learning:
	Pull down menus).	Views.		Internet connection	Classroom/Computer
	3. Explain Viewports, Named	2. Execute steps involved	Practical		Lab
	Views, Steering Wheel.	in executing Pull-down	30 hours		
	4. Define the V point, DDV point	menus that includes			
	and Plan View techniques.	Home, Render, Insert,			
		Manage, Output, Plug-			
		ins, online, and Express			
		Tools.			
		3. Enlist steps to apply 3D			
		Modelling panels			
		including Modelling,			
		Mesh, Solid, Editing,			
		Draw, Modify, Section,			
		Coordinates, View,			

	Selection Layers and		
	Groups		
4	Explain steps of applying		
	3D Modelling Pull down		
	menus that are Home		
	Solid Surfaces Mesh		
	Bondor Daramotric		
	Insort Appotato View		
	Managa Output Diug		
	ivialiage, Output, Plug-		
	ins, Online, and Express		
5.	Viewports (-VPORTS		
	command), pre-set 3D		
	Viewports and Named		
	Views.		
6.	Apply the technique to		
	track the cursor		
	(Steering Wheel) over		
	wedge as full navigation		
	wheel, view object		
	wheel, orbit, walk		
	up/down, rewind and its		
	setting.		
7.	Viewpoints (-VPOINT		
	command with Rotate		
	switch, DDVPOINT		
	command), and PLAN		
	command.		

LU2: Introduce	The student will be able to:	1.	Execute the "Thickness"	Total Hours:			
Thickness and	1. Apply the Thickness		command at command	10 hours	•	Workbooks	Theory:
Elevation	command.		prompt with different		•	Pen	Class room
	2. Set the Elevation of object.		values or modify general	Theory:	•	Case studies	
			properties of an object.	02 hours	•	Computer	Practical learning:
		2.	Execute the "Elev"		•	Internet connection	Classroom/Computer
			command at command	Practical			Lab
			prompt with different	08 hours			
			values.				
LU3: Visualise	The student will be able to:	1.	Control the display	Total Hours:			
the Model	1. Manage Visual Panel, Styles		of edges and	34 hours	•	Workbooks	Theory:
	and Manager.		shading (Visual		•	Pen	Class room
	2. Apply different visual functions		Styles) in the	Theory:	•	Case studies	
	(hide, grid).		viewport that are	06 hours	•	Computer	Practical learning:
			2D Wireframe, 3D		•	Internet connection	Classroom/Computer
			Wireframe, 3D	Practical			Lab
			Hidden, Realistic,	28 hours			
			Shaded, Shaded				
			with Edges, Shades				
			of Gary, Sketchy				
			and X-Ray.				
		2.	Regenerate a three-				
			dimensional model with				
			hidden lines using HIDE				
			command.				
		3.	Set the grid with				
			DSETTINGS command.				

Module 4: Draw Coordinates

Objective of the module: The module explores the basic of 3D User and Z Cartesian (X, Y, Z) coordinates system.

Duration	64 hours	Theory:	14 hours	Practical:	50 hours

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1: Explain Basic terminologies of Z Coordinates	 The student will be able to: 1. Grasp the different commonly known terminologies of 3D coordinates 2. Understand the tracking and movement in Z direction 3. Become familiar with 3D point filters 4. Implement "Helix" function for 3D spiral. 	 Explain 3D Cartesian coordinates against 3DPOLY command by specifying start and end points. Describe the process to track in Z direction by "O Snap" tracking or F11 key and "Polar" tracking or F10 key. Run "move" command to move in Z direction by specifying displacement. Acquire 3D point filters, e.g. specifying radius of circle command. Create 3D spiral using 	Total Hours: 26 hours Theory: 06 hours Practical: 20 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room Practical learning: Classroom/Computer Lab

			"helix" command by			
			defining number of			
			turns. diameter and			
			height.			
LU2:	The student will be able to:	1.	Orientation of the user	Total Hours:		
Define User	1. Configure User Coordinates		coordinate system (UCS)	38 hours	Workbooks	Theory:
Coordinates	System (UCS) properties.		axes and the location of		• Pen	Class room
System	2. Apply different functions to		the current UCS origin	Theory:	Case studies	
	UCS.		with the execution of	08 hours	Computer	Practical learning:
	3. Restore the UCS.		command "ucsicon".		 Internet 	Classroom/Computer
	4. Generate View cube.	2.	Present an overview of	Practical:	connection	Lab
			"ucs" command with	30 hours		
			multiple switches			
			including			
			✓ Face			
			✓ Named			
			✓ Object			
			✓ Previous			
			✓ New			
			✓ View			
			✓ World			
			✓ X/Y/Z.			
		3.	Define the UCS toolbar.			
		4.	Explain the Plan UCS			
			procedure with "PLAN"			
			command.			
		5.	Incorporate Dynamic			
			UCS with short keys of			

	C	Ctrl+D.		
	6. F	Restore a saved and		
	r	named UCS with "R" key.		
	7. E	Explore UCS dialog box		
	ι	using "UCSMAN"		
	c	command.		
	8. (Get the visual feedback		
	c	of the model by		
	١	Viewcube.		

Module 5: Draw 3D Orbit, Navigation and Model

Objective of the module: The module explores the use of 3D orbit for a model, creation of a camera and aspects of 3D model objects in detail.

Duration116 hoursTheory:19 hours

Practical: 97 hours

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1: Develop familiarity with 3D Orbit	 The student will be able to: Apprehend the working of 3D Orbit (constrained, free and continuous). Explain different projection and navigational modes. Assist in applying visual aids and styles. 	 Define 3D orbit with the command of "3DOrbit" for constrained orbit on selected object. Provide due assistance in developing zoom and pan facility in 3D orbit. Apply projection mode by selecting "Perspective" option in 3D orbit. Select different visual styles e.g. 3D Hidden, 3D Wireframe, Conceptual, and Realistic. Select different visual aids e.g. Compass, Grid and UCS Icon. Set the 3D view while in the orbit command using preset views. Differentiate between 	Total Hours: 52 hours Theory: 07 hours Practical: 45 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room Practical learning: Classroom/Computer Lab

		8.	Free and Continuous orbit. Highlight the use of "Esc" key. Discover other navigational modes including but not limited to Walk, Fly, Swivel, and Adjust Distance.				
LU2: Perform 3D	The learner will be able to: 1. Design and create Camera.	1.	Functions of Camera	Total Hours: 32 hours	•	Workbooks	Theory:
navigation	 Plot and adjust the Camera. Walk and Fly settings. Maintain the different animation paths. 	2.	 ✓ Creation ✓ View ✓ Preview ✓ Properties ✓ Plotting ✓ Display ✓ Adjust ✓ Swivelling ✓ Distance Define parallel projection or perspective views by using a camera and target with the help of "DVIEW" 	Theory: 07 hours Practical: 25 hours	•	Pen Case studies Computer Internet connection	Class room P ractical learning: Classroom/Computer Lab
		3.	command. Simulate walking and				

		4.	flying through a 3D drawing and their setting. Execute "ANIPATH" command for animation path.				
LU3:	The learner will be able to:	1.	Create wireframe	Total Hours:			
Operate 3D Object	1. Constitute Structure of		models by positioning	32 hours	•	Workbooks	Theory:
	Wireframes.		2D objects anywhere in		•	Pen	Class room
	2. Apply Surfaces		3D space i.e. 3D	Theory:	•	Case studies	
	3. Create of Solids.		polylines.	05 hours	•	Computer	Practical learning:
		2.	Define faceted surfaces		•	Internet connection	Classroom/Computer
			using a polygonal mesh.	Practical:			Lab
		3.	Combine different	27 hours			
			simple shapes to create				
			more complex solids by				
			joining or subtracting				
			them or finding their				
			intersecting (over-				
			lapping) volume.				

Module 6: Produce 2D Solids and 3D Faces

Objective of the module: The module explores the two dimensional solids and three dimensional faces with Edge and invisible Edge.

Duration 48 hours Theory: 09 hours

Practical: 39 hours

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1: Draw 2D Solids and 3D Faces	 The student will be able to: Create solid-filled triangles and quadrilaterals. Create four sided surface anywhere in 3D space. 	 Execute "SOLID" command with points to be filled. Execute "3DFACE" command with points to be filled. Make a three- dimensional polyface mesh vertex using "PFACE" command and pick points. 	Total Hours: 24 hours Theory: 05 hours Practical: 19 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room P ractical learning: Classroom/Computer Lab
LU2: Draw Edges	The student will be able to:1. Create edges.2. Draw 3D faces with invisible edges.	 Execute the "EDGE" command with toggle visibility and hidden edges Enter i or invisible before the first point of an edge makes the edge invisible. 	Total Hours: 24 hours Theory: 04 hours Practical: 20 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room P ractical learning: Classroom/Computer Lab

Module 7: Insert Surfaces

Objective of the module: To study, and analyze basic and complex 3D surfaces.

Duration93 hoursTheory:16 hours

77 hours

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1: Draw Basic 3D surfaces	 The student will be able to: 1. Explore different Mesh primitive options. 2. Create smooth and refine Meshes. 3. Edit existing Meshes. 4. Convert Meshes. 	 Locate Mesh tab from 3D Modelling dropdown option of solids panel (primitive panel, drop- down). Apply different Mesh primitive options including; Apply smoothness and refinement on Meshes (even legacy 2D drawings) with following commands; MESHSMOOTHMORE MESHSMOOTHLESS MESHSMOOTHREFINE Add or Remove Mesh Creases using; MESHCREASE MESHUNCREASE Enable Mesh editing 	Total Hours: 49 hours Theory: 09 hours Practical: 40 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room Practical learning: Classroom/Computer Lab

Practical:

		using; _MESHEXTRUDE _MESHSPLIT (mid-point) _MESHMERGE _MESHCAP (close hole) 6. Perform convert Meshes using the command; CONVTOSURFACE			
LU2:	The student will be able to:	1. Develop following	Total Hours:		Theorem
Draw Complex	1. Explore different Surfaces	Surfaces:	44 nours	Workbooks Ben	Class room
Surfaces	Edge, Extrude, and Offsetting).	(REVSURF)	Theory:	Case studies	
	2. Edit Surfaces.	✓ Tabulated Surface	07 hours	Computer	Practical learning:
	3. Apply NURB controls on	(TABSURF)		Internet connection	Classroom/Computer
	Surfaces.	✓ Rule Surface (RULESURF)	Practical:		Lab
	4. Analyse Surfaces.	using "Surf tab" variables	37 hours		
		 Edge Surface (EDGESURF) 			
		✓ Plane Surface			
		(PLANESURF)			
		 Extrude Surface (EXTRUDE) 			
		2. Develop 3D solid or			
		surface in the space			
		between several cross			
		sections using "LOFT"			
		command.			
		3. Create 3D surface by			
		sweeping a 2D or 3D curve			

along a path using
"SWEEP" command.
4. Explain Surface Network.
5. Blend two existing
surfaces using
"SURFBLEND"
command.
6. Create a new surface or
cap to close an open edge
of an existing surface
using "SURFPATCH"
command.
7. Produce a parallel surface
at a specified distance
from the original surface
using "SURFOFFSET"
command.
8. Edit the existing surfaces
Add and edit control
vertices on a NURBS
surface or sp line using
Surface CV edit bar.
9. Convert object to NURBS
using "CONVTONURBS"
command.
10. Apply following NURB
Vertex Controls:
✓ Surface CV-Show

	✓ Surface CV-Hide		
	✓ Surface CV-Rebuild		
	✓ Surface CV-Add		
	✓ Surface CV-Remove		
	11. Conduct surface analysis		
	via:		
	✓ Analyse Zebra		
	✓ Analyse Curvature		
	✓ Analyse Draft		
	12. Describe Surface		
	associatively.		

Module 8: Develop Solids

Objective of the module: To explore the composites of solids and their three dimensional editing.

Duration67 hoursTheory:14 hoursPractical:53 hours

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1:	The student will be able to:	1. Launch Solid primitives	Total:		
Create Solids	1. Explore Solid primitives.	tab from 3D Modelling	19 hours	Workbooks	Theory:
	2. Run Extrude with Taper and	dropdown option of	Theory:	• Pen	Class room
	Path.	solids panel.	03 hours	Case studies	
	3. Execute commands (Polysolid,	2. Convert an existing line,	Practical:	Computer	Practical learning:
	Revolve, Sweep and Loft).	2D polyline, arc, or circle	16 hours	Internet connection	Classroom/Computer
		to a solid with a			Lab
		rectangular profile using			
		"Polysolid" command.			
		3. Create unique solid			
		primitives by extruding			
		existing two-dimensional			
		objects using "Extrude"			
		command			
		4. Execute following			
		commands on Solids:			
		✓ Revolve			
		🖌 Sweep			
		🖌 Loft			

LU2:	The student will be able to:	1. Convert polylines and	Total:			
Edit effectively 3D	1. Explore different methods to	circles with thickness to 3D	26 hours	•	Workbooks	Theory:
objects	convert the object/drawing	solids using "convtosolid"	Theory:	• Pen		Class room
	to Solid or Surface.	command.	06 hours	•	Case studies	
	2. Operate the Solid using 3D	2. Convert polylines and	Practical:	•	Computer	Practical learning:
	Move, Rotate, Align, Mirror,	circles with thickness to	20 hours	•	Internet connection	Classroom/Computer
	and Array.	surfaces using				Lab
	3. Apply different edge effects	"convtosurface" command.				
	or extract edges.	3 . Edit the existing solids				
		through;				
		✓ 3D Move				
		✓ 3D Rotate				
		✓ 3D Align				
		✓ 3D Mirror				
		✓ 3D Rectangular Array				
		✓ 3D Polar Array				
		4 . Extract edges of a 3D				
		object using "_xedges"				
		command.				
		5. Adjust the smoothness of				
		shaded and rendered objects				
		using "FACETRES" command				
		with valid values range.				
		6. Apply "ISOLINES" and				
		"REGEN" command to				
		regenerate the 3D drawing in				
		3D view.				

LU3:	The student will be able to:	1. Apply following	Total:		
Develop 3D Solid	1. Explore different composite	Composite functions on	22 hours	Workbooks	Theory:
composites	functions applicable to solids	s solids:	Theory:	• Pen	Class room
	(Union, Subtract, and	✓ Union	05 hours	 Manuals/hand outs 	
	Intersect).	✓ Subtract	Practical:	• CBT	Practical learning:
	2. Thicken the Solids.	✓ Intersect	17 hours	Case studies	Classroom/Computer
	3. Check interference on solid	2. Create 3D solid by		Computer	Lab
	objects.	thickening a surface using		 Internet connection 	
		"THICKEN" command.			
		3. Highlight 3D solids that			
		overlap using			
		"INTERFERE" command.			

Module 9: Modify Solid Faces

Objective of the module: To learn the modification of the 3D solid faces.

Duration33 hoursTheory:07 hoursPractical:26 hours

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1: Modify Solid Faces	 The student will be able to: 1. Explore Solid faces pattern. 2. Run Imprint functionality. 3. Execute shell (hollow) effects. 	 Modify solids face using Taper Extrude Delete Copy Colour Apply "Imprint" facility on arcs, circles, lines, 2D and 3D poly lines, ellipses, sp lines, regions, bodies, and 3D solids object. Create shell or a hollow thin wall with a specified thickness from 3D solid object. 	Total Hours: 18 hours Theory: 04 hours Practical: 14 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room P ractical learning: Classroom/Computer Lab
LU2: Edit Solids	 The student will be able to: 1. Explore different methods to manipulate sub-objects in solids. 2. Use Grip tool. 3. Pull and press the bounded areas. 	 Select and manipulate a selection set of more than one sub object on any number of solids that include more than one type of sub object using "CTRL" key to 	Total Hours: 15 hours Theory: 03 hours Practical:	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room Practical learning: Classroom/Computer Lab

		hold or toggle	12 hours	
	2.	Constrain the		
		movement or rotation		
		of a selection set of		
		objects to an axis or a		
		plane using "Move" or		
		"Rotate" command.		
	3.	Press or pull bounded		
		areas by pressing and		
		holding CTRL +ALT, or		
		by clicking the Press		
		pull button on the		
		dashboard and then		
		picking the bounded		
		area.		

Module 10: Navigate Sections and merge Flat Objects from 3D Model

Objective of the module: To learn the creation of the Section and the Flat objects from three dimensional models. 31 hours

Duration 40 hours Theory: 09 hours Practical:

Learning Unit	Learning Outcomes	Learning Elements	Duration Materials Required		Learning Place
LU1: Navigate Section Objects	 The student will be able to: 1. Understand Section plane. 2. Manipulate Sections. 3. Generate 2D and 3D Sections. 4. Perform Section commands (Slice, etc.) 	 Create section object that exposes the interior details of a model created with 3D objects using "SECTIONPLANE" command. Apply following options to manipulate Section using Grips: ✓ Base grip ✓ Directional arrow grip ✓ Segment end grip ✓ Menu grip Apply following commands on Section: Generate 2D and 3D Sections using option of right click button of mouse. 	Total: 19 hours Theory: 04 hours Practical: 15 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room Practical learning: Classroom/Computer Lab

		 Use a p cre "Se App on 	e the intersection of plane and solids to eate a region using ection" command. oply "Slice" command the 3D object.				
LU2: Merge Flat Objects	 The student will be able to: Perform Flat representation of the 3D objects. Create 3D view using user coordinate system Configure solid profile. 	 Cree rep obj vie cor Exe cor Gel sec cre usil cor Cre usil cor Cre var Cre va	eate 2D or "flattened" presentation of all 3D ojects in the current ew using "flat shot' mmand. ecute "SOLVIEW" mmand. enerate profiles and ctions in viewports eated with SOLVIEW ing "SOLDRAW" mmand. evelop 3D view using CS. in "SOLPROF" mmand.	Total: 21 hours Theory: 05 hours Practical: 16 hours	•	Workbooks Pen Case studies Computer Internet connection	Theory: Class room P ractical learning: Classroom/Computer Lab

Module 11: Customise Rendering, Materials and Lights

Objective of the module: To learn the application of Rendering, its environment and background, and advance features. Use of different Materials and Lights are highlighted for 3D drawings.

Duration 163 hours Th	eory: 37 hours	Practical:	126 hours
-----------------------	----------------	------------	-----------

Learning Unit	Learning Outcomes	Learning Elements	Duration	Materials Required	Learning Place
LU1: Execute Rendering	 The student will be able to: Perform Render command, destination, quality, selection, crop, and file. Recognize environment (Render, Gradient) and background (Solid, Image). Explain advance features of Rendering as Sampling, Shadow, Ray Tracing, Illumination, Diagnostic processing. 	 Create a photorealistic or realistically shaded image of a three- dimensional wireframe or solid model using "Render" command. Determine the output site that the renderer uses to display the rendered image using "RPERF" command and selecting "Destination". Determine the output quality that the renderer uses to display the rendered image using "RPERF" command and selecting "Quality the rendered image using "RPERF" Control the parts of the model that gets processed during rendering for following three settings: ✓ View 	Total Hours: 83 hours Theory: 17 hours Practical: 66 hours	 Workbooks Pen Case studies Computer Internet connection 	Theory: Class room Practical learning: Classroom/Computer Lab

✓ Crop
✓ Selected
5. Render cropped window using
"RPERF" command and selecting
"Procedure".
6. Execute the process to Render to
File and Turn off Render to File.
7. Use environmental features to set
up atmospheric effects or
background images using
"RENDERENVIRONMENT"
command.
8. Apply following Backgrounds:
✓ Single colour
✓ Multi-colour gradient
✓ Bitmap image
Using "View" command and later
selecting "New".
9. Define settings that affect how
materials are handled by the
renderer as:
✓ Apply Materials
✓ Texture Filtering
✓ Force 2-Sided
10. Execute how renderer controls
sampling by allocating values to;
✓ Min Samples

		 ✓ Max Samples ✓ Filter Type ✓ Filter Width and Filter Height ✓ Contrast colour ✓ Contrast Alpha 11. Apply settings that affect how shadows appear in the rendered image in Simple, Sort, or Segments modes. 12. Apply settings that affect the shading of a rendered image (Ray tracing) with following options; ✓ Enable ✓ Max Depth ✓ Max Reflection Y Show how scene is illuminated with the following options: ✓ Enable ✓ Max Refraction 13. Show how scene is illuminated with the following options: ✓ Enable ✓ Max Depth ✓ Max Reflection 14. Explain "Diagnostic" and "Processing" features. 			
LU2: Apply/Configure Materials	The student will be able to:1. Explore different methods to add/edit Materials to 3D	 Add Material to drawing using "Materials" or "Marbrowseropen" commands. 	Total Hours: 49 hours	WorkbooksPen	Theory: Class room

					1
	arawings.	2. Apply Material by layers using	Ineory:	Case studies	
	2. Adjust Material	"MATERIALATTACH" command.	11 hours	Computer	Practical learning:
	scale/layer.	3. Create own Material e.g. photo.		Internet	Classroom/Computer
	3. Manage the Material	4. Achieve Material mapping of photo	Practical:	connection	Lab
	mapping (Photo, Shapes).	or shapes using "MATERIALMAP"	38 hours		
	4. Purge Materials from	command.			
	objects.	5. Configure "Cut out Materials"			
		procedure.			
		6. Apply "Bump Map" option of the			
		Material command.			
		7. Execute "_VSMATERIALMODE"			
		command to On/Off Materials.			
LU3:	The student will be able to:	1. Turn On/Off the default Lighting	Total Hours:		
Apply Lights	1. Explore point and spot	using "DEFAULTLIGHTING"	31 hours	Workbooks	Theory:
	Lights.	command.		• Pen	Class room
	2. Study Lights tool palette.	2. Execute command "POINTLIGHT"	Theory:	Case studies	
	3. Perform geographic	that radiates light in all directions	09 hours	Computer	Practical learning:
	location settings for a	from its location.		Internet	Classroom/Computer
	particular object.	3. Execute command "SPOTLIGHT"	Practical:	connection	Lab
	4. Study properties of the	that emits a directional cone of	22 hours		
	Sun for Light issues.	light.			
		4. Modify Lights in a drawing using			
		"LIGHTLIST" command.			
		5. Customize Photometric (light			
		energy" light for lighting units,			
		Luminaries, Weblight, Halogen			
		effect, Candela intensity, etc.			
		6. Apply the available functionality of			

Lights tool palette by pressing
CTRL+3.
7. Display uniform parallel light rays
in one direction only using
"DISTANTLIGHT" command and
mentioning from and to points.
8. Incorporate natural light based on
climate into the drawing by
specifying the latitude and
longitude of a location for the
sunlight using
"GEOGRAPHICLOCATION"
command.
9. Adjust the Sun properties using
the "SUNPROPERTIES' command.

4. Assessment guidance

Good practice in Pakistan makes use of sessional and final assessments, the basis of which is described below. Good practice by vocational training providers in Pakistan is to use a combination of these sessional and final assessments, combined to produce the final qualification result. **Sessional assessment** goes on all the time. Its purpose is to provide feedback on learning:

- To the student: to identify achievement and areas for further work
- To the teacher: to evaluate the effectiveness of teaching to date, and to focus on future plans.

Assessors need to devise sessional assessments for both theoretical and practical work. Guidance is provided in the assessment strategy.

Final assessment is usually taken on completion of a course or module, which says whether or not the student has "passed". It is – or should be – undertaken with reference to all the objectives or outcomes of the course, and is usually fairly formal. Considerations of security – ensuring that the student who gets the credit is the person who did the work – assume considerable importance in final assessment.

Methods of assessment

For lessons with a high quantity of theory, written or oral tests related to learning outcomes and/ or learning content can be conducted. For workplace lessons, assessment can focus on the quality of planning the related process, the quality of executing the process, the quality of the product and/or evaluation of the process.

Methods include direct assessment, which is the most desirable form of assessment. For this method, evidence is obtained by direct observation of the student's performance.

Examples for direct assessment include:

- surprise quizzes, for example conduct small test on the fly
- Work performances, for example supervising the task given in the computer lab
- Demonstrations, for example demonstrating the use of a particular training tool in preparation for staff development
- Direct questioning, where the assessor will ask the student from the syllabus taught in the class room or lab
- Paper-based tests, such as multiple choice or short answer questions form taught material

Indirect assessment is the method used where the performance cannot be watched and evidence is gained indirectly.

Examples for indirect assessment include:

- Home Work, such as assignments are given to be completed from home
- Final project, at the end of each module; a project is given to check the progress of the trainee

Module wise assessment methods

This course contains eleven modules. Suggestions for assessment of these modules are given below.

• Assessment of Module 1: Exhibit Duties and Exercise Rights at the workplace

Learner may be asked to:

- Explain the Conflict of Interest
- > Define relation between objectives and tasks
- Assessment of Module 2: Perform Orientation about AutoCAD 2D Fundamentals

Learner may be asked to:

- > What are the advantages and disadvantages of using CAD systems to create engineering drawings?
- What is the default AutoCAD filename extension?
- > How do the GRID and SNAP options assist us in sketching?
- > List and describe the different coordinate entry methods available in AutoCAD?
- > When using the Line command, which option allows us to quickly create a line- segment connecting back to the starting point?
- > List and describe the two types of coordinate systems commonly used for planar geometry.
- > Which key do you use to quickly cancel a command?
- > When you use the Pan command, do the coordinates of objects change?

• Assessment of Module 3: Create 3D Interface drawings

Learner may be asked to:

- > Explain Visual Styles.
- Make a balanced "Grid"
- Provide example of "Elev" command.

• Assessment of Module 4: Draw Coordinates

Learner may be asked to:

- Define UCS.
- Restore a UCS.
- Execute "Helix" function.

• Assessment of Module 5: Draw 3D Orbit, Navigations and Model

Learner may be asked to:

- Generate Camera.
- Draw an animation path.
- Explain Visual aids.

• Assessment of Module 6: Produce 2D Solids and 3D Faces

Learner may be asked to:

- Explain Face benefits.
- > Design an invisible edge of a 3D view.
- ➢ Run "Edge" command.

• Assessment of Module 7: Insert Surfaces

Learner may be asked to:

- > Explain NURB CV.
- Develop Mesh tessellation.
- Compose extrude surface.

• Assessment of Module 8: Develop Solids

Learner may be asked to:

- Explain procedure of Isolines.
- Develop 3D Mirror.

Execute "Loft" command for 3D object.

• Assessment of Module 9: Modify Solid Faces

Learner may be asked to:

- > Explain grip tools.
- > Extrude Imprint.
- > Taper face.

• Assessment of Module 10: Navigate Sections and Merge Flat Objects from 3D Model

Learner may be asked to:

- Explain Soldraw function.
- Execute "Section plane" command.
- > Apply Slice factorization.

• Assessment of Module 11: Customise Rendering, Materials and Light

Learner may be asked to:

- Explain sampling techniques.
- Implement "Ray tracing" on shape.
- > Describe "Diagnostic" procedure.
- > Why "processing" is useful?
- How to apply Gradient environment?
- What is Material mapping?
- > Differentiate between "Bump Map" and "Cut out" Material.
- > Define different "Photometric lights" options.
- Configure "Distant Light" for an object.
- Customize "Sun properties" for Central-Asia.
- What is the role of "Geographic Location" settings?

Principles of assessment

All assessments should be valid, reliable, fair and flexible:

Fairness means that there should be no advantages or disadvantages for any person assessed. For example, it should not happen that one student gets prior information about the type of work performance that will be assessed, while another candidate does not get any prior information.

Validity means that the assessment assesses what it claims to assess.

Flexibility means that the assessor has to be flexible concerning the assessment approach. For example, if there is a power failure during the assessment, the assessor should modify the arrangements to accommodate the student's needs.

Assessment strategy for the AutoCAD

This curriculum consists of eleven modules:

- Module 1: Exhibit Duties and Rights at the workplace
- Module 2: Perform Orientation about AutoCAD 2D Fundamentals
- Module 3: Create 3D Interface drawings
- Module 4: Draw Coordinates
- Module 5: Draw 3D Orbit, Navigation and Model
- Module 6: Produce 2D Solids and 3D Faces
- Module 7: Insert Surfaces
- Module 8: Develop Solids
- Module 9: Modify Solid Faces
- Module 10: Navigate Sections and merge Flat Objects from 3D Models
- Module 11: Customise Rendering, Materials and Lights

Sessional assessment

The sessional assessment for all modules shall be in two parts: theoretical assessment and practical assessment. The sessional marks shall contribute to the final qualification.

Theoretical assessment for all learning modules must consist of a written paper lasting at least half an hour per module. This can be a combination of multiple choice and short questions and answers.

For practical assessment, all procedures and methods for the modules must be assessed on a sessional basis. Guidance is provided below under Planning for assessment.

Final assessment

Final assessment shall be in two parts: theoretical assessment and practical assessment. The final assessment marks shall contribute to the final qualification.

The final theoretical assessment shall consist of one 3-hour paper. The paper should include at least two extended answer questions. The remainder shall consist of half multiple choice and half short-answer question.

For the final practical assessment, each student shall be assessed over a period of two days, with two 3-hour session on each day. This represents a total of four sessions totalling 12 hours of practical assessment for each student. During this period, each student must be assessed using either subjective paper or practical lab assignment, depending on his or her aptitude.

Planning for assessment

Sessional assessment: Assessors need to plan in advance how they will conduct sessional assessments for each module. The tables on the following pages are for assessors to use to insert how many hours of theoretical and practical assessment will be conducted and what the scheduled dates are.

Final assessment: Training providers need to decide ways to combine modules and practical assignments into a cohesive two-day final assessment programme. This should include a meeting with the assessors to discuss a standardised methodology for awarding marks.

Planning aid for sessional assessment

Module 1: Exhibit Duties and Rights at the workplace					
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates		
LU1: Practise Ethics and professional conduct					
LU2: Process business activities					
LU3: Create awareness of rights					

Module 2: Perform Orientation about AutoCAD 2D Fundamentals					
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates		
LU1: Control the display in drawings					
LU2: Create basic drawings					

LU3: Manipulate objects			
Module 3: Create 3D Interface drawings			
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates
LU1: Develop familiarity with 3D Basics interface			
LU2: Know about Thickness and Elevation			
LU3: Visualize the Model			

Module 4: Draw Coordinates					
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates		
LU1: Acquire basic terminologies of Z Coordinates					

LU2: investigate User Coordinates System		

Module 5: Draw 3D Orbit, Navigation and Model					
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates		
LU1: Develop familiarity with 3D Orbit					
LU2: Research Three dimensional navigation					
LU3: Inspect 3D Object					
Module 6: Produce 2D Solids and 3D Faces					
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates		
LU1: Inspect 2D Solids and 3D Faces					
LU2: Study Edge					

Module 7: Insert Surfaces			
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates
LU1: Know about Basic 3D surfaces			
LU2: Comprehend Complex surfaces			

Module 8: Develop Solids			
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates
LU1: Create Solids			
LU2: Edit 3D			
LU3: Study Solid composites			

Module 9: Modify Solid Faces			
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates
LU1: Modify Solid Faces			
LU2: Edit Solids			
Module 10: Navigate Sections and merge Flat Objects from 3D Models)			<u>.</u>
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates
LU1: Handle Section Objects			
LU2: Handle Flat Objects			
Module 11: Customise rendering, materials and lights			
Learning Units	Recommended formative assessment	Recommended Methodology	Scheduled Dates
LU1: Study Rendering			

LU2: Employ Materials		
LU3: Employ Lights		

List of Tools and equipment

Documents, policies and guidelines (Anticipated Class size: 20 trainees/students, it may vary)

20 copies per class	Text book(s) for this course	
20 copies per class	Reference book(s) for this course	
20 copies per class	Syllabus for this course	
1 class set	Bio-Sketch of Trainer	
1 class set	Copies of job advertisements extract	
1 class set	Information on sources of Knowledge Management	
Contact details for colleagues, supe	rvisor	

Tools and Equipment (Class size: 20 trainees/students)

1 set	Fire equipment including the provision of fire extinguishers
1 set	Alarm systems
1 set	Emergency lighting
1 set	Fire safety and exit signs.

20	Computers
1	Scanner
1	Printer
1	Multimedia Projector
1	Internet Connection
On each computer	Software • Microsoft® Office (any version)- Enterprise Edition • Microsoft® Windows 8 or above • AutoDesk AutoCAD 2013 or above version/release

List of consumables

- Notebooks
- CDs Rewriteable
- Photocopy Papers
- Ball pens
- Pencils
- Erasers
- Sharpeners
- Board Markers
- Plastic files
- Flip chart papers
- Pin-board pins
- Whiteboard
- Whiteboard Eraser

- Paper knifes
- Glue sticks
- Paper clips
- Scissors
- Punching machines

National Vocational and Technical Training Commission (NAVTTC)

🔊 5th Floor Evacuee Trust Complex Sector F-5/1, Islamabad.

- ☞ +92 51 9044 04
- 🖄 info@navttc.org
- 🐵 www.navttc.org